Credit

ROBOTICS ENGINEERING

With recent advances in computer hardware and software, as well as 3D printing, the field of robotics is entering a new phase where robots are smaller, faster, cheaper, and smarter. These next generation robots will have applications in a wide variety of fields, including manufacturing, medicine, education, entertainment, military applications, etc.

The Bachelor of Science in Engineering in Robotics Engineering program requires a total of 125 credit hours. The program is designed to provide students with an understanding of important concepts in Robotics, Electrical and Computer Engineering, Systems Engineering, and Mechanical Engineering, as well as an ability to apply these concepts to design robots and robotic systems for diverse applications.

The Bachelor of Science in Engineering in Robotics Engineering program is accredited by the Engineering Accreditation Commission of ABET, https://www.abet.org

Program Educational Objectives

The graduates who receive the Bachelor of Science in Engineering degree in Robotics Engineering from the University of Michigan-Dearborn are expected to achieve within a few years of graduation the high professional, ethical, and societal goals demonstrated by accomplishing one or more of the objectives described below.

- Achieve professional growth in an engineering position in regional and national industries. Growth can be evidenced by promotions and appointment in the workplace (management positions, technical specialization), entrepreneurial activities, and consulting activities.
- Success in advanced engineering studies evidenced by enrollment in graduate courses, completion of graduate degree programs, presentations and publications at professional events, and awards or licenses associated with advanced studies.
- Realization of impactful achievements in societal roles demonstrated by attainment of community leadership roles, mentoring activities, civic outreach service, and active roles in professional societies.

Student Outcomes

To achieve the educational objectives, the graduates of the program will have:

- An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.
- An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.
- 3. An ability to communicate effectively with a range of audiences.
- 4. An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.
- An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.
- 6. An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.

7. An ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

Dearborn Discovery Core

Please see the Dearborn Discovery Core (General Education) (https:// umdearborn.edu/dearborn-discovery-core/) webpage or additional information.

Foundational Studies

Writing and Communication (GEWO) - 6 Credits

Upper-Level Writing Intensive (GEWI) - 3 Credits

Quantitative Thinking and Problem Solving (GEQT) - 3 Credits

Critical and Creative Thinking (GECC) - 3 Credits

Areas of Inquiry

Natural Science (GENS) - 7 Credits

- Lecture/Lab Science Course
- Additional Science Course

Social and Behavioral Analysis (GESB) - 9 Credits

Humanities and the Arts (GEHA) - 6 Credits

Intersections (GEIN) - 6 Credits

Capstone

Code

Capstone (GECE) – 3 Credits

Major Requirements

Title

In addition to completion of the Dearborn Discovery Core, the following courses are required to earn a BSE degree in Robotics Engineering from UM-Dearborn.

			Hours				
Prerequisite Courses							
ENC	GR 100	Introduction to Engineering and Engineering Design	3				
CON	MP 270	Tech Writing for Engineers (Also fulfills 3 credits DDC Written and Oral Communication)	of 3				
ECC	DN 201	Prin: Macroeconomics (ECON 201 or 202 also fulfill 3 credits of DDC Social and Behavioral Analysis)	3				
С	or ECON 202	Prin: Microeconomics					
MA	TH 115	Calculus I	4				
MA	TH 116	Calculus II	4				
MA	TH 215	Calculus III	4				
MA	TH 228	Diff Eqns with Linear Algebra	4				
IMS	SE 317	Eng Probability and Statistics	3				
CHE	EM 134	General Chemistry IA	4				
PH\	/S 150	General Physics I	4				
PH۱	/S 151	General Physics II	4				
ECE	276	Discrete Math in Computer Engr	4				
С	or MATH 276	Discrete Math Meth Comptr Engr					
ECE	273	Digital Systems	4				

ECE 270	Computer Methods in ECE I	4					
ECE 210	Circuits	4					
Robotics Engineering Major Core							
ECE 311	Electronic Circuits I	4					
ECE 3731	Microproc and Embedded Sys	4					
ECE 347	Applied Dynamics	4					
ECE 3641	Robotic Manipulation	4					
ECE 3171	Analog & Discrete Sig & Sys	4					
ECE 370	Adv Soft Techn in Comp Engr	4					
IMSE 381	Industrial Robots	4					
ECE 460	Automatic Control Systems	4					
or ME 442	Control Systems Analysis and Design						
ECE 4641	Mobile Robots	4					
ENT 400	Entrepreneurial Thinking&Behav	3					
ECE 4987	Robotics Engineering Design I	2					
ECE 4988	Robotics Engineering Design II	2					
Professional and	Approved Electives	11					
Professional Elec	tives - select 6-8 credits from the following list:	6-8					
CIS 479	Intro to Artificial Intel						
or ECE 479	Artificial Intelligence						
ECE 434	Introduction to Machine Learning						
ECE 471	Comp Networks/Data Comm						
ECE 473	Embedded System Design						
ECE 480	Intro to Dig Signal Processing						
ECE 4881	Introduction to Robot Vision						
ECE 4951	Sys Desgn and Microcontrollers						
ECE 491	Directed Studies						
IMSE 489	Robotics Systems Simulation						
ME 3601	Design and Analysis of Machine Elements						
ME 472	Prin & Appl of Mechatronic Sys						
ENGR 492	Exper Honors Directed Research						
ENGR 493	Exper Hnrs Dir Dsgn						
Approved Elective	es - select additional 4-6 credits to total a minimum	4-6					
of 11 credits in Pi	rofessional and Approved Electives:						
ECE 319	Electromagnetic Compatibility						
ECE 375	Intro to Comp Architecture						
ECE 385	Elec Materials and Devices						
ECE 414	Electronic Systems Design						
ECE 415	Power Electronics						
ECE 428	Cloud Computing						
ECE 433	Intr to Multimedia Technolgies						
ECE 434	Introduction to Machine Learning						
ECE 435	Intro to Mobil/Smrt Dev & Tech						
ECE 4361	Electric Machines and Drives						
ECE 438	Web Engr. Prin & Tech						
ECE 4432	Renewable Elec Pwr Sys						
ECE 450	Analog and Digital Comm Sys						
ECE 475	Comp Hardware Org/Design						
ENGR 350	Nanoscience and Nanotechnology						
ENGR 399	Experiential Honors Prof. Prac						
ENGR 492	Exper Honors Directed Research						
ENGR 493	Exper Hnrs Dir Dsgn						

IMSE 3005	Intro to Operations Research
IMSE 421	Eng Economy and Dec Anlys
IMSE 4545	Information Systems Design
ME 230	Thermodynamics
ME 260	Design Stress Analyses
or ME 265	Applied Mechanics

Learning Goals

- 1. An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.
- An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.
- 3. An ability to communicate effectively with a range of audiences.
- 4. An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.
- 5. An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.
- 6. An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
- 7. An ability to acquire and apply new knowledge as needed, using appropriate learning strategies.